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Unusual shapes for a catenary under the effects of surface tension and gravity:
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The familiar catenary is the shape assumed by a chain or string as it hangs from two points. The
mathematical equation of the catenary was first published more than three hundred years ago by Leib-
nitz and Huygen, among others. Here we consider the shapes assumed by a hanging string in the pres-
ence of gravity and surface tension. The surface tension is introduced by suspending the string from a
thin horizontal rod while the area bounded by the string and the rod is covered with a soap film. The
string then assumes new and wonderful shapes depending on the relative strength of the surface tension
and the weight per unit length of the string. When surface tension dominates, the string is pulled in-
ward, assuming a convex shape similar to the Greek letter ¥. On the other hand, when gravity is dom-
inant the string is pulled outward and assumes a concave shape best described as a distorted catenary.
However, when the gravitational force normal to the string matches the surface tension, the string takes
a linear configuration similar to the letter V. Under suitable conditions, the string can be made to as-
sume any of the three configurations by adjusting the separation of its end points. The equations that de-
scribe the shape of the string are derived by minimizing the total energy of the system and are presented
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for the three principal configurations.

PACS number(s): 68.10.Cr, 02.30.Wd, 68.15.+¢

In late 17th century, the mathematical equation that
describes the shape of a hanging chain or catenary (from
the Latin word catena for chain), was published indepen-
dently by several well known mathematicians of the time
including Leibnitz, Huygen, and the two Bernoulli broth-
ers Jakob and Johann [1].

Throughout the 18th century as the calculus of varia-
tions was being refined and extended, the hanging chain
problem was often used to illustrate the power of a newly
invented method. For example, in 1744 Euler cast the
catenary in the form of an isoperimetric problem of
finding a curve through two fixed points that gives the
lowest center of gravity subject to a length constraint [1].

Here we consider the shapes assumed by a hanging
string in the presence of gravity and surface tension. We
introduce the surface tension by suspending the string
from a thin horizontal rod while the area bounded by the
string and the rod is covered with a soap film. The shape
assumed by the string depends on the relative strength of
the surface tension and the normal component of the
gravitational force per unit length of the string. When
surface tension dominates, the string is pulled inward, as-
suming a shape similar to the Green letter ¥ [Fig. 1(a)].
When gravity is dominant, the shape is that of a distorted
catenary [Fig. 1(b)]. However, when the gravitational
force normal to the string matches the surfaces tension,
the string takes a linear configuration similar to the letter
V [Fig. 1(c)]. Furthermore, under suitable conditions, the
string can be made to assume any of the three
configurations by adjusting the separation of its end
points along the support rod.

We use the technique of the calculus of variations to
derive the governing differential equations of the string
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by minimizing the total energy of the system (sum of the
gravitational and surface energies) subject to a length
constraint. The differential equations are then integrated
to yield the mathematical equations of the string in
closed form for the three principal configurations.

Figure 2 shows the right half of the string in a coordi-
nate system where the string hangs from the x axis and
the y axis forms a line of symmetry. The length of the
string is 2L, ds represents an element of the string, 6 is
the angle the string makes with the horizontal, and X,
and Y, are defined in Fig. 2. In what follows, o is the
surface tension, A is the linear mass density of the string,
and g stands for the acceleration of gravity. The dimen-
sionless ratio of 20 /Ag will be denoted by a.

The total energy of the system can now be written as

U=f0 [Agy(1+x")2—20yx']dy , (1)

where x'=dx /dy and (1+x'2)""2dy =ds. The first term
in the integrand gives the gravitational potential energy
relative to the x axis and the second term gives the sur-
face energy. Note that in Eq. (1) since y is negative the
surface energy term is positive and the gravitational po-
tential energy relative to the x axis is negative as expect-
ed. Furthermore, the length constraint may be written as

O ’
L0=f_Y0(1+x 124y . 2)

To minimize the total energy U subject to this length
constraint, we define G (y,x,x’) to be

G=(Agy+7)1+x")2—20px" , 3)

where y is a Lagrange multiplier, and require that func-
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tion G satisfy the Euler-Lagrange equation,

oG _ d

ox dy

aG
ox’

4)

With our particular choice of variables, we note that G

is not an explicit function of x. Therefore,

aG _ ~ __, 2y—1/2

Q—Co“x (14+x?) (Agy +v)—20y , (5)
where C is a constant.

Equation (5) is the differential equation of the system
and may be solved to obtain x (y). However, it is much
more convenient to cast Eq. (5) into a parametric form by
noting that x’=cot6 and (1+x’)"1/2=sin8. Hence, one
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FIG. 1. The three principal configurations of the string.
When surface tension is dominant, the string is pulled inward
assuming the configuration shown in (a). When gravity is dom-
inant, the string takes the form shown in (b). When the gravita-
tional force component normal to the string, Ag cos, exactly
balances the surface tension 20, then the string assumes the
linear configuration shown in (c).

FIG. 2. The right half of the string as it hangs from the x
axis. Note that the y axis forms a line of symmetry.

can immediately write,

_ Cy—ycosb
- Ag cos6—20 ’
which in turn can be simplified into,
y _ 1
—=—C, , 6
C (cosb@—a) Y ©

where as before a=20/Ag, and C and C, are given in
terms of C, and y by C=(Cy—vya)/Ag and
C,=v/(ya—Cy).

Furthermore, Eq. (6) can be differentiated to give

dy __ Csing
do  (cosf—a)®’
which immediately leads to

ax __ Ccosf
d0 (cosb—a)*’

because dy /dx =tanf. Equations (7) and (8) constitute
the parametric differential equations of the system. As
noted before, Eq. (7) can be integrated easily to yield Eq.
(6) which gives the functional dependence of y on 6.
Similarly, Eq. (8) may be integrated to yield the function-
al dependence of x on 6. The final results depend on
whether a is larger, equal to, or smaller than unity.

When a > 1, the surface tension dominates over gravity
causing the string to assume a convex configuration [see
Fig. 1(a)] with a clumped length /. The mathematical
equations of the string are easily obtained by integrating
Egs. (7) and (8) to yield

(7N

(8)

x _ —a’sinf
I (a®>—1)a—cosh)
2a —1 | (@+1)tan(6/2)
T@- A | ey T @
and
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Yy a y__ "«
s=—-—qa3C,, 10 ==——+C, . 14
1 cosf—a Y (19 1 cosb—a Y 14
where the constants /,C,, and C, can be found [2] in When a=X,/L,, the string assumes a linear
terms of @, X, and L,,. configuration [Fig. 1(c)] given by
When a=1, the shape of the string remains convex (L2 —x2)172
[see Fig. 1(a)], but the equations of the string take a =0 70" (x-— X,) . (15)
simpler form: X,
X = lcot( 0/2)[4—sin"%(6/2)]+C, , (11) Finally, when a <X,/L,, the configuration becomes
,I 6 concave best described as a distorted catenary [Fig. 1(b)],
%= —[1/(cos6—1)]+C, . (12)  with the following equations:

When a < 1, three distinct configurations are possible [3]
depending on the relative value of @ and X,/L,. If
a>X,/L,, the configuration is convex similar to the case
of a>1 [Fig. 1(a)]. However, in this case, the equations
of the string have a somewhat different functional form:

x _ —a?sin6
I (1—a*)cosb—a)
—a (1+a)tan(6/2)+V1—a? e
(1=a®”?" | (1+a)tan(6/2)—V1—a? *7
(13)
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FIG. 3. The shapes assumed by the string (only the right half
is shown) as X, is varied from 0.6 to 1.4 for a fixed value of
a=0.5, and Ly=2. These graphs are generated from numerical
computations based on the equations developed in the text.
Note that when X,=alL,=1, the configuration is linear as
shown in the dashed line. Above this line, the curves are convex
with X, <aL,=1, and below this line, the configurations are
concave with X, >aL,=1.

x _ asind
C  (1—a®)cosb—a)

1 (1+a)tan(6/2)+V'1—a?
(1—a®’? | (1+a)tan(6/2)—V1—a?

y__ vt 1
C cosb—a cosfp—a ’ an

where 6y is the angle the string makes with the x axis.

It is interesting to note that when a <1, a string of
length 2L, can be made to assume a convex, linear, or
concave configuration depending on the value of X,
which is easily manipulated. Thus, starting with a=0.5
and L,=2, Fig. 3 shows the configurations of the right
half of the string as X, is varied from 0.6 to 1.4. Note
that the configuration is convex for X, <aL,, becomes
linear when X,=aL, and takes a concave configuration
when X,>aL,. The graphs of Fig. 3 were generated
from numerical computations based on the equations of
the string.

Experimentally, the change from a convex to concave

LQ
(a) \ n (b)
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FIG. 4. The sequence of configurations assumed by the string
as the ends’ separation is increased. The configuration is a vert-
ical line (a) when X,=0, takes a convex form (b) when
X, <aL,, becomes linear (c) when X,=alL,, and reverts to a
distorted catenary (d) when X, > aL,.
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configuration is easily demonstrated by using a length of
knitting yarn and a soap solution made of one part glyce-
rin, two parts Joy (the dishwashing liquid), and seven
parts distilled water. The two ends of the yarn are loose-
ly tied to a glass rod to allow easy variation of the ends’
separation. With the ends close together, the entire yarn
is dipped into the soap solution [Fig. 4(a)]. Now when
one end of the yarn is pulled away along the glass rod,
the string begins with a convex configuration [Fig. 4(b)].

As X, increases the curvature moderates and the
clumped length shortens until the linear configuration
[Fig. 4(c)] is reached at X,=aL,. The configuration be-
comes a distorted catenary [Fig. 4(d)] when X, is further
increased. If X, is now reduced, the string retraces the
entire sequence of configurations to return to its starting
shape.
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